Unsloth Setup Guide for RTX 3090
INSTALLED AND VERIFIED ON LOCAL-AI SERVER
Research completed: 2025-12-28 Installation verified: 2025-12-28
Server Details
- Hostname: local-ai
- Tailscale IP: 100.89.34.86
- LAN IP: 10.0.0.250
- User: lars
- Password: LARS25 (stored in Locker: f9ca71df)
- GPUs: 2x RTX 3090 (48GB total VRAM)
Installed Versions
- Unsloth: 2025.12.9
- PyTorch: 2.9.1+cu128
- CUDA: Enabled, 2 GPUs detected
Installation Command Used
pip3 install unsloth
This installed all dependencies including: - torch 2.9.1 - transformers 4.57.3 - accelerate 1.12.0 - bitsandbytes 0.49.0 - peft 0.18.0 - trl 0.24.0 - xformers 0.0.33.post2
Verification Command
python3 -c "from unsloth import FastLanguageModel; print('Unsloth loaded')"
Key Features for RTX 3090
- 3x faster training with Triton kernels
- 30% less VRAM with padding-free packing
- FP8 GRPO reinforcement learning
- Docker image available
OOM Prevention
If out of memory: 1. Set batch_size to 1, 2, or 3 2. Use 4-bit quantization (QLoRA) 3. Reduce context length
Training Script Template
from unsloth import FastLanguageModel
import torch
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="unsloth/Qwen2.5-Coder-14B-Instruct-bnb-4bit",
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
model = FastLanguageModel.get_peft_model(
model,
r=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_alpha=16,
lora_dropout=0,
bias="none",
use_gradient_checkpointing="unsloth",
)
Related
- Locker: Local AI Server (f9ca71df)
- Track: LARS Implementation Sprint (fc0dd483)
- KB: Nexus AI Engine (e213b1c0)