page

Multiple Wake Words

Multiple Wake Word Support

Capability

openWakeWord can run 15-20 models simultaneously on a single Raspberry Pi 3 core.

Use Cases

Wake Word Routes To Purpose
"Hey LARS" LARS/Ollama Local AI, unrestricted tasks
"Hey Case" Mobile AI Lightweight, on-the-go assistant
"Hey Lena" Nexus/Claude Full Nexus integration

Implementation

from openwakeword.model import Model

# Load multiple wake word models
models = {
    "hey_lars": Model("models/hey_lars.tflite"),
    "hey_case": Model("models/hey_case.tflite"),
    "hey_lena": Model("models/hey_lena.tflite")
}

def on_wake_word(wake_word: str):
    if wake_word == "hey_lars":
        route_to_lars()
    elif wake_word == "hey_case":
        route_to_mobile_ai()
    elif wake_word == "hey_lena":
        route_to_nexus()

Training Each Wake Word

  1. Use Google Colab notebook for each phrase
  2. ~1 hour per wake word
  3. Export separate .tflite files
  4. Load all models at startup

Resource Usage

  • Each model adds minimal CPU overhead
  • All run in parallel, listening simultaneously
  • Detection is instant when triggered
ID: 2b3fe261
Path: LARS Voice Assistant > Wake Word Detection > Multiple Wake Words
Updated: 2025-12-30T20:32:18